This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The aleph function is a one-to-one mapping from the ordinals to the infinite cardinals. See also alephf1ALT . (Contributed by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephf1 | |- aleph : On -1-1-> On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephfnon | |- aleph Fn On |
|
| 2 | alephon | |- ( aleph ` x ) e. On |
|
| 3 | 2 | rgenw | |- A. x e. On ( aleph ` x ) e. On |
| 4 | ffnfv | |- ( aleph : On --> On <-> ( aleph Fn On /\ A. x e. On ( aleph ` x ) e. On ) ) |
|
| 5 | 1 3 4 | mpbir2an | |- aleph : On --> On |
| 6 | aleph11 | |- ( ( x e. On /\ y e. On ) -> ( ( aleph ` x ) = ( aleph ` y ) <-> x = y ) ) |
|
| 7 | 6 | biimpd | |- ( ( x e. On /\ y e. On ) -> ( ( aleph ` x ) = ( aleph ` y ) -> x = y ) ) |
| 8 | 7 | rgen2 | |- A. x e. On A. y e. On ( ( aleph ` x ) = ( aleph ` y ) -> x = y ) |
| 9 | dff13 | |- ( aleph : On -1-1-> On <-> ( aleph : On --> On /\ A. x e. On A. y e. On ( ( aleph ` x ) = ( aleph ` y ) -> x = y ) ) ) |
|
| 10 | 5 8 9 | mpbir2an | |- aleph : On -1-1-> On |