This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqneg | |- ( A e. CC -> ( A = -u A <-> A = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1times | |- ( A e. CC -> ( ( 1 + 1 ) x. A ) = ( A + A ) ) |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | 2 2 | addcli | |- ( 1 + 1 ) e. CC |
| 4 | 3 | mul01i | |- ( ( 1 + 1 ) x. 0 ) = 0 |
| 5 | negid | |- ( A e. CC -> ( A + -u A ) = 0 ) |
|
| 6 | 4 5 | eqtr4id | |- ( A e. CC -> ( ( 1 + 1 ) x. 0 ) = ( A + -u A ) ) |
| 7 | 1 6 | eqeq12d | |- ( A e. CC -> ( ( ( 1 + 1 ) x. A ) = ( ( 1 + 1 ) x. 0 ) <-> ( A + A ) = ( A + -u A ) ) ) |
| 8 | id | |- ( A e. CC -> A e. CC ) |
|
| 9 | 0cnd | |- ( A e. CC -> 0 e. CC ) |
|
| 10 | 3 | a1i | |- ( A e. CC -> ( 1 + 1 ) e. CC ) |
| 11 | 1re | |- 1 e. RR |
|
| 12 | 11 11 | readdcli | |- ( 1 + 1 ) e. RR |
| 13 | 0lt1 | |- 0 < 1 |
|
| 14 | 11 11 13 13 | addgt0ii | |- 0 < ( 1 + 1 ) |
| 15 | 12 14 | gt0ne0ii | |- ( 1 + 1 ) =/= 0 |
| 16 | 15 | a1i | |- ( A e. CC -> ( 1 + 1 ) =/= 0 ) |
| 17 | 8 9 10 16 | mulcand | |- ( A e. CC -> ( ( ( 1 + 1 ) x. A ) = ( ( 1 + 1 ) x. 0 ) <-> A = 0 ) ) |
| 18 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 19 | 8 8 18 | addcand | |- ( A e. CC -> ( ( A + A ) = ( A + -u A ) <-> A = -u A ) ) |
| 20 | 7 17 19 | 3bitr3rd | |- ( A e. CC -> ( A = -u A <-> A = 0 ) ) |