This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addresr | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 〈 𝐴 , 0R 〉 + 〈 𝐵 , 0R 〉 ) = 〈 ( 𝐴 +R 𝐵 ) , 0R 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0r | ⊢ 0R ∈ R | |
| 2 | addcnsr | ⊢ ( ( ( 𝐴 ∈ R ∧ 0R ∈ R ) ∧ ( 𝐵 ∈ R ∧ 0R ∈ R ) ) → ( 〈 𝐴 , 0R 〉 + 〈 𝐵 , 0R 〉 ) = 〈 ( 𝐴 +R 𝐵 ) , ( 0R +R 0R ) 〉 ) | |
| 3 | 2 | an4s | ⊢ ( ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) ∧ ( 0R ∈ R ∧ 0R ∈ R ) ) → ( 〈 𝐴 , 0R 〉 + 〈 𝐵 , 0R 〉 ) = 〈 ( 𝐴 +R 𝐵 ) , ( 0R +R 0R ) 〉 ) |
| 4 | 1 1 3 | mpanr12 | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 〈 𝐴 , 0R 〉 + 〈 𝐵 , 0R 〉 ) = 〈 ( 𝐴 +R 𝐵 ) , ( 0R +R 0R ) 〉 ) |
| 5 | 0idsr | ⊢ ( 0R ∈ R → ( 0R +R 0R ) = 0R ) | |
| 6 | 1 5 | ax-mp | ⊢ ( 0R +R 0R ) = 0R |
| 7 | 6 | opeq2i | ⊢ 〈 ( 𝐴 +R 𝐵 ) , ( 0R +R 0R ) 〉 = 〈 ( 𝐴 +R 𝐵 ) , 0R 〉 |
| 8 | 4 7 | eqtrdi | ⊢ ( ( 𝐴 ∈ R ∧ 𝐵 ∈ R ) → ( 〈 𝐴 , 0R 〉 + 〈 𝐵 , 0R 〉 ) = 〈 ( 𝐴 +R 𝐵 ) , 0R 〉 ) |