This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for adderpq . (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adderpqlem | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( A +pQ C ) ~Q ( B +pQ C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` A ) e. N. ) |
| 3 | xp2nd | |- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` C ) e. N. ) |
| 5 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 7 | xp1st | |- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
|
| 8 | 7 | 3ad2ant3 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` C ) e. N. ) |
| 9 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` A ) e. N. ) |
| 11 | mulclpi | |- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) |
| 13 | addclpi | |- ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) -> ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. ) |
|
| 14 | 6 12 13 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. ) |
| 15 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
|
| 16 | 10 4 15 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 17 | xp1st | |- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
|
| 18 | 17 | 3ad2ant2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` B ) e. N. ) |
| 19 | mulclpi | |- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
|
| 20 | 18 4 19 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 21 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 22 | 21 | 3ad2ant2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` B ) e. N. ) |
| 23 | mulclpi | |- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
|
| 24 | 8 22 23 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
| 25 | addclpi | |- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
|
| 26 | 20 24 25 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 27 | mulclpi | |- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
|
| 28 | 22 4 27 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 29 | enqbreq | |- ( ( ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) /\ ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
|
| 30 | 14 16 26 28 29 | syl22anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
| 31 | addpipq2 | |- ( ( A e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A +pQ C ) = <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
|
| 32 | 31 | 3adant2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A +pQ C ) = <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
| 33 | addpipq2 | |- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
|
| 34 | 33 | 3adant1 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 35 | 32 34 | breq12d | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( A +pQ C ) ~Q ( B +pQ C ) <-> <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
| 36 | enqbreq2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
|
| 37 | 36 | 3adant3 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 38 | mulclpi | |- ( ( ( 2nd ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. ) |
|
| 39 | 4 4 38 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. ) |
| 40 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 41 | 2 22 40 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 42 | mulcanpi | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
|
| 43 | 39 41 42 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 44 | mulclpi | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
|
| 45 | 16 24 44 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 46 | mulclpi | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) |
|
| 47 | 39 41 46 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) |
| 48 | addcanpi | |- ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) -> ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) ) |
|
| 49 | 45 47 48 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) ) |
| 50 | mulcompi | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) |
|
| 51 | fvex | |- ( 1st ` A ) e. _V |
|
| 52 | fvex | |- ( 2nd ` B ) e. _V |
|
| 53 | fvex | |- ( 2nd ` C ) e. _V |
|
| 54 | mulcompi | |- ( x .N y ) = ( y .N x ) |
|
| 55 | mulasspi | |- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
|
| 56 | 51 52 53 54 55 53 | caov4 | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 57 | 50 56 | eqtri | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 58 | fvex | |- ( 2nd ` A ) e. _V |
|
| 59 | fvex | |- ( 1st ` C ) e. _V |
|
| 60 | 58 53 59 54 55 52 | caov4 | |- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
| 61 | mulcompi | |- ( ( 2nd ` A ) .N ( 1st ` C ) ) = ( ( 1st ` C ) .N ( 2nd ` A ) ) |
|
| 62 | mulcompi | |- ( ( 2nd ` C ) .N ( 2nd ` B ) ) = ( ( 2nd ` B ) .N ( 2nd ` C ) ) |
|
| 63 | 61 62 | oveq12i | |- ( ( ( 2nd ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 64 | 60 63 | eqtri | |- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 65 | 57 64 | oveq12i | |- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) |
| 66 | addcompi | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
|
| 67 | ovex | |- ( ( 1st ` A ) .N ( 2nd ` C ) ) e. _V |
|
| 68 | ovex | |- ( ( 1st ` C ) .N ( 2nd ` A ) ) e. _V |
|
| 69 | ovex | |- ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. _V |
|
| 70 | distrpi | |- ( x .N ( y +N z ) ) = ( ( x .N y ) +N ( x .N z ) ) |
|
| 71 | 67 68 69 54 70 | caovdir | |- ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) |
| 72 | 65 66 71 | 3eqtr4i | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 73 | addcompi | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
|
| 74 | mulasspi | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
|
| 75 | mulcompi | |- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) |
|
| 76 | mulasspi | |- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` C ) .N ( 1st ` B ) ) ) |
|
| 77 | mulcompi | |- ( ( 2nd ` A ) .N ( ( 2nd ` C ) .N ( 1st ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 1st ` B ) ) .N ( 2nd ` A ) ) |
|
| 78 | mulasspi | |- ( ( ( 2nd ` C ) .N ( 1st ` B ) ) .N ( 2nd ` A ) ) = ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) |
|
| 79 | 76 77 78 | 3eqtrri | |- ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) |
| 80 | 79 | oveq1i | |- ( ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) |
| 81 | 75 80 | eqtri | |- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) |
| 82 | mulasspi | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
|
| 83 | 81 82 | eqtri | |- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 84 | 74 83 | eqtri | |- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 85 | 84 | oveq2i | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) |
| 86 | distrpi | |- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
|
| 87 | 73 85 86 | 3eqtr4i | |- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
| 88 | 72 87 | eqeq12i | |- ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) |
| 89 | 49 88 | bitr3di | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
| 90 | 37 43 89 | 3bitr2d | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
| 91 | 30 35 90 | 3bitr4rd | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( A +pQ C ) ~Q ( B +pQ C ) ) ) |