This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcompi | |- ( A +N B ) = ( B +N A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pinn | |- ( A e. N. -> A e. _om ) |
|
| 2 | pinn | |- ( B e. N. -> B e. _om ) |
|
| 3 | nnacom | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) = ( B +o A ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. N. /\ B e. N. ) -> ( A +o B ) = ( B +o A ) ) |
| 5 | addpiord | |- ( ( A e. N. /\ B e. N. ) -> ( A +N B ) = ( A +o B ) ) |
|
| 6 | addpiord | |- ( ( B e. N. /\ A e. N. ) -> ( B +N A ) = ( B +o A ) ) |
|
| 7 | 6 | ancoms | |- ( ( A e. N. /\ B e. N. ) -> ( B +N A ) = ( B +o A ) ) |
| 8 | 4 5 7 | 3eqtr4d | |- ( ( A e. N. /\ B e. N. ) -> ( A +N B ) = ( B +N A ) ) |
| 9 | dmaddpi | |- dom +N = ( N. X. N. ) |
|
| 10 | 9 | ndmovcom | |- ( -. ( A e. N. /\ B e. N. ) -> ( A +N B ) = ( B +N A ) ) |
| 11 | 8 10 | pm2.61i | |- ( A +N B ) = ( B +N A ) |