This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mulerpq . (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulerpqlem | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( A .pQ C ) ~Q ( B .pQ C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xp1st | |- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` A ) e. N. ) |
| 3 | xp1st | |- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` C ) e. N. ) |
| 5 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 1st ` C ) e. N. ) -> ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. ) |
| 7 | xp2nd | |- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` A ) e. N. ) |
| 9 | xp2nd | |- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
|
| 10 | 9 | 3ad2ant3 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` C ) e. N. ) |
| 11 | mulclpi | |- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
|
| 12 | 8 10 11 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 13 | xp1st | |- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
|
| 14 | 13 | 3ad2ant2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` B ) e. N. ) |
| 15 | mulclpi | |- ( ( ( 1st ` B ) e. N. /\ ( 1st ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. ) |
|
| 16 | 14 4 15 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. ) |
| 17 | xp2nd | |- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
|
| 18 | 17 | 3ad2ant2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` B ) e. N. ) |
| 19 | mulclpi | |- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
|
| 20 | 18 10 19 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 21 | enqbreq | |- ( ( ( ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) /\ ( ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) |
|
| 22 | 6 12 16 20 21 | syl22anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) |
| 23 | mulpipq2 | |- ( ( A e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A .pQ C ) = <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
|
| 24 | 23 | 3adant2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A .pQ C ) = <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
| 25 | mulpipq2 | |- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B .pQ C ) = <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
|
| 26 | 25 | 3adant1 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B .pQ C ) = <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 27 | 24 26 | breq12d | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( A .pQ C ) ~Q ( B .pQ C ) <-> <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
| 28 | enqbreq2 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
|
| 29 | 28 | 3adant3 | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 30 | mulclpi | |- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) |
|
| 31 | 4 10 30 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) |
| 32 | mulclpi | |- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
|
| 33 | 2 18 32 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 34 | mulcanpi | |- ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
|
| 35 | 31 33 34 | syl2anc | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 36 | mulcompi | |- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) |
|
| 37 | fvex | |- ( 1st ` A ) e. _V |
|
| 38 | fvex | |- ( 2nd ` B ) e. _V |
|
| 39 | fvex | |- ( 1st ` C ) e. _V |
|
| 40 | mulcompi | |- ( x .N y ) = ( y .N x ) |
|
| 41 | mulasspi | |- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
|
| 42 | fvex | |- ( 2nd ` C ) e. _V |
|
| 43 | 37 38 39 40 41 42 | caov4 | |- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 44 | 36 43 | eqtri | |- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 45 | mulcompi | |- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) |
|
| 46 | fvex | |- ( 1st ` B ) e. _V |
|
| 47 | fvex | |- ( 2nd ` A ) e. _V |
|
| 48 | 46 47 39 40 41 42 | caov4 | |- ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` B ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) |
| 49 | mulcompi | |- ( ( ( 1st ` B ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) |
|
| 50 | 45 48 49 | 3eqtri | |- ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) |
| 51 | 44 50 | eqeq12i | |- ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) |
| 52 | 51 | a1i | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) |
| 53 | 29 35 52 | 3bitr2d | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) |
| 54 | 22 27 53 | 3bitr4rd | |- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( A .pQ C ) ~Q ( B .pQ C ) ) ) |