This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cncf | |- -cn-> = ( a e. ~P CC , b e. ~P CC |-> { f e. ( b ^m a ) | A. x e. a A. e e. RR+ E. d e. RR+ A. y e. a ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccncf | |- -cn-> |
|
| 1 | va | |- a |
|
| 2 | cc | |- CC |
|
| 3 | 2 | cpw | |- ~P CC |
| 4 | vb | |- b |
|
| 5 | vf | |- f |
|
| 6 | 4 | cv | |- b |
| 7 | cmap | |- ^m |
|
| 8 | 1 | cv | |- a |
| 9 | 6 8 7 | co | |- ( b ^m a ) |
| 10 | vx | |- x |
|
| 11 | ve | |- e |
|
| 12 | crp | |- RR+ |
|
| 13 | vd | |- d |
|
| 14 | vy | |- y |
|
| 15 | cabs | |- abs |
|
| 16 | 10 | cv | |- x |
| 17 | cmin | |- - |
|
| 18 | 14 | cv | |- y |
| 19 | 16 18 17 | co | |- ( x - y ) |
| 20 | 19 15 | cfv | |- ( abs ` ( x - y ) ) |
| 21 | clt | |- < |
|
| 22 | 13 | cv | |- d |
| 23 | 20 22 21 | wbr | |- ( abs ` ( x - y ) ) < d |
| 24 | 5 | cv | |- f |
| 25 | 16 24 | cfv | |- ( f ` x ) |
| 26 | 18 24 | cfv | |- ( f ` y ) |
| 27 | 25 26 17 | co | |- ( ( f ` x ) - ( f ` y ) ) |
| 28 | 27 15 | cfv | |- ( abs ` ( ( f ` x ) - ( f ` y ) ) ) |
| 29 | 11 | cv | |- e |
| 30 | 28 29 21 | wbr | |- ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e |
| 31 | 23 30 | wi | |- ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) |
| 32 | 31 14 8 | wral | |- A. y e. a ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) |
| 33 | 32 13 12 | wrex | |- E. d e. RR+ A. y e. a ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) |
| 34 | 33 11 12 | wral | |- A. e e. RR+ E. d e. RR+ A. y e. a ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) |
| 35 | 34 10 8 | wral | |- A. x e. a A. e e. RR+ E. d e. RR+ A. y e. a ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) |
| 36 | 35 5 9 | crab | |- { f e. ( b ^m a ) | A. x e. a A. e e. RR+ E. d e. RR+ A. y e. a ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) } |
| 37 | 1 4 3 3 36 | cmpo | |- ( a e. ~P CC , b e. ~P CC |-> { f e. ( b ^m a ) | A. x e. a A. e e. RR+ E. d e. RR+ A. y e. a ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) } ) |
| 38 | 0 37 | wceq | |- -cn-> = ( a e. ~P CC , b e. ~P CC |-> { f e. ( b ^m a ) | A. x e. a A. e e. RR+ E. d e. RR+ A. y e. a ( ( abs ` ( x - y ) ) < d -> ( abs ` ( ( f ` x ) - ( f ` y ) ) ) < e ) } ) |