This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function expression for the Moore closure. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | |- F = ( mrCls ` C ) |
|
| Assertion | mrcfval | |- ( C e. ( Moore ` X ) -> F = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | |- F = ( mrCls ` C ) |
|
| 2 | fvssunirn | |- ( Moore ` X ) C_ U. ran Moore |
|
| 3 | 2 | sseli | |- ( C e. ( Moore ` X ) -> C e. U. ran Moore ) |
| 4 | unieq | |- ( c = C -> U. c = U. C ) |
|
| 5 | 4 | pweqd | |- ( c = C -> ~P U. c = ~P U. C ) |
| 6 | rabeq | |- ( c = C -> { s e. c | x C_ s } = { s e. C | x C_ s } ) |
|
| 7 | 6 | inteqd | |- ( c = C -> |^| { s e. c | x C_ s } = |^| { s e. C | x C_ s } ) |
| 8 | 5 7 | mpteq12dv | |- ( c = C -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) = ( x e. ~P U. C |-> |^| { s e. C | x C_ s } ) ) |
| 9 | df-mrc | |- mrCls = ( c e. U. ran Moore |-> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) ) |
|
| 10 | mreunirn | |- ( c e. U. ran Moore <-> c e. ( Moore ` U. c ) ) |
|
| 11 | mrcflem | |- ( c e. ( Moore ` U. c ) -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) : ~P U. c --> c ) |
|
| 12 | 10 11 | sylbi | |- ( c e. U. ran Moore -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) : ~P U. c --> c ) |
| 13 | fssxp | |- ( ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) : ~P U. c --> c -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) C_ ( ~P U. c X. c ) ) |
|
| 14 | 12 13 | syl | |- ( c e. U. ran Moore -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) C_ ( ~P U. c X. c ) ) |
| 15 | vuniex | |- U. c e. _V |
|
| 16 | 15 | pwex | |- ~P U. c e. _V |
| 17 | vex | |- c e. _V |
|
| 18 | 16 17 | xpex | |- ( ~P U. c X. c ) e. _V |
| 19 | ssexg | |- ( ( ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) C_ ( ~P U. c X. c ) /\ ( ~P U. c X. c ) e. _V ) -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) e. _V ) |
|
| 20 | 14 18 19 | sylancl | |- ( c e. U. ran Moore -> ( x e. ~P U. c |-> |^| { s e. c | x C_ s } ) e. _V ) |
| 21 | 8 9 20 | fvmpt3 | |- ( C e. U. ran Moore -> ( mrCls ` C ) = ( x e. ~P U. C |-> |^| { s e. C | x C_ s } ) ) |
| 22 | 3 21 | syl | |- ( C e. ( Moore ` X ) -> ( mrCls ` C ) = ( x e. ~P U. C |-> |^| { s e. C | x C_ s } ) ) |
| 23 | mreuni | |- ( C e. ( Moore ` X ) -> U. C = X ) |
|
| 24 | 23 | pweqd | |- ( C e. ( Moore ` X ) -> ~P U. C = ~P X ) |
| 25 | 24 | mpteq1d | |- ( C e. ( Moore ` X ) -> ( x e. ~P U. C |-> |^| { s e. C | x C_ s } ) = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) |
| 26 | 22 25 | eqtrd | |- ( C e. ( Moore ` X ) -> ( mrCls ` C ) = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) |
| 27 | 1 26 | eqtrid | |- ( C e. ( Moore ` X ) -> F = ( x e. ~P X |-> |^| { s e. C | x C_ s } ) ) |