This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acosrecl | |- ( A e. ( -u 1 [,] 1 ) -> ( arccos ` A ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1rr | |- -u 1 e. RR |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | iccssre | |- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
|
| 4 | 1 2 3 | mp2an | |- ( -u 1 [,] 1 ) C_ RR |
| 5 | 4 | sseli | |- ( A e. ( -u 1 [,] 1 ) -> A e. RR ) |
| 6 | 5 | recnd | |- ( A e. ( -u 1 [,] 1 ) -> A e. CC ) |
| 7 | acosval | |- ( A e. CC -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
|
| 8 | 6 7 | syl | |- ( A e. ( -u 1 [,] 1 ) -> ( arccos ` A ) = ( ( _pi / 2 ) - ( arcsin ` A ) ) ) |
| 9 | halfpire | |- ( _pi / 2 ) e. RR |
|
| 10 | asinrecl | |- ( A e. ( -u 1 [,] 1 ) -> ( arcsin ` A ) e. RR ) |
|
| 11 | resubcl | |- ( ( ( _pi / 2 ) e. RR /\ ( arcsin ` A ) e. RR ) -> ( ( _pi / 2 ) - ( arcsin ` A ) ) e. RR ) |
|
| 12 | 9 10 11 | sylancr | |- ( A e. ( -u 1 [,] 1 ) -> ( ( _pi / 2 ) - ( arcsin ` A ) ) e. RR ) |
| 13 | 8 12 | eqeltrd | |- ( A e. ( -u 1 [,] 1 ) -> ( arccos ` A ) e. RR ) |