This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The arccosine function is real in its principal domain. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | acosrecl | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arccos ‘ 𝐴 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | iccssre | ⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( - 1 [,] 1 ) ⊆ ℝ |
| 5 | 4 | sseli | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → 𝐴 ∈ ℝ ) |
| 6 | 5 | recnd | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → 𝐴 ∈ ℂ ) |
| 7 | acosval | ⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) |
| 9 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 10 | asinrecl | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arcsin ‘ 𝐴 ) ∈ ℝ ) | |
| 11 | resubcl | ⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( arcsin ‘ 𝐴 ) ∈ ℝ ) → ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) | |
| 12 | 9 10 11 | sylancr | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) |
| 13 | 8 12 | eqeltrd | ⊢ ( 𝐴 ∈ ( - 1 [,] 1 ) → ( arccos ‘ 𝐴 ) ∈ ℝ ) |