This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an absolute value is zero iff the argument is zero. (Contributed by Mario Carneiro, 8-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abvf.a | |- A = ( AbsVal ` R ) |
|
| abvf.b | |- B = ( Base ` R ) |
||
| abveq0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | abveq0 | |- ( ( F e. A /\ X e. B ) -> ( ( F ` X ) = 0 <-> X = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abvf.a | |- A = ( AbsVal ` R ) |
|
| 2 | abvf.b | |- B = ( Base ` R ) |
|
| 3 | abveq0.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 | abvrcl | |- ( F e. A -> R e. Ring ) |
| 5 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | 1 2 5 6 3 | isabv | |- ( R e. Ring -> ( F e. A <-> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
| 8 | 4 7 | syl | |- ( F e. A -> ( F e. A <-> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) ) |
| 9 | 8 | ibi | |- ( F e. A -> ( F : B --> ( 0 [,) +oo ) /\ A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) ) ) |
| 10 | simpl | |- ( ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) -> ( ( F ` x ) = 0 <-> x = .0. ) ) |
|
| 11 | 10 | ralimi | |- ( A. x e. B ( ( ( F ` x ) = 0 <-> x = .0. ) /\ A. y e. B ( ( F ` ( x ( .r ` R ) y ) ) = ( ( F ` x ) x. ( F ` y ) ) /\ ( F ` ( x ( +g ` R ) y ) ) <_ ( ( F ` x ) + ( F ` y ) ) ) ) -> A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) ) |
| 12 | 9 11 | simpl2im | |- ( F e. A -> A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) ) |
| 13 | fveqeq2 | |- ( x = X -> ( ( F ` x ) = 0 <-> ( F ` X ) = 0 ) ) |
|
| 14 | eqeq1 | |- ( x = X -> ( x = .0. <-> X = .0. ) ) |
|
| 15 | 13 14 | bibi12d | |- ( x = X -> ( ( ( F ` x ) = 0 <-> x = .0. ) <-> ( ( F ` X ) = 0 <-> X = .0. ) ) ) |
| 16 | 15 | rspccva | |- ( ( A. x e. B ( ( F ` x ) = 0 <-> x = .0. ) /\ X e. B ) -> ( ( F ` X ) = 0 <-> X = .0. ) ) |
| 17 | 12 16 | sylan | |- ( ( F e. A /\ X e. B ) -> ( ( F ` X ) = 0 <-> X = .0. ) ) |