This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a real number. (Contributed by NM, 17-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absre | |- ( A e. RR -> ( abs ` A ) = ( sqrt ` ( A ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. RR -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 4 | 1 | sqvald | |- ( A e. RR -> ( A ^ 2 ) = ( A x. A ) ) |
| 5 | cjre | |- ( A e. RR -> ( * ` A ) = A ) |
|
| 6 | 5 | oveq2d | |- ( A e. RR -> ( A x. ( * ` A ) ) = ( A x. A ) ) |
| 7 | 4 6 | eqtr4d | |- ( A e. RR -> ( A ^ 2 ) = ( A x. ( * ` A ) ) ) |
| 8 | 7 | fveq2d | |- ( A e. RR -> ( sqrt ` ( A ^ 2 ) ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 9 | 3 8 | eqtr4d | |- ( A e. RR -> ( abs ` A ) = ( sqrt ` ( A ^ 2 ) ) ) |