This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005) (Revised by Mario Carneiro, 14-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjmulrcl | |- ( A e. CC -> ( A x. ( * ` A ) ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjcj | |- ( A e. CC -> ( * ` ( * ` A ) ) = A ) |
|
| 2 | 1 | oveq2d | |- ( A e. CC -> ( ( * ` A ) x. ( * ` ( * ` A ) ) ) = ( ( * ` A ) x. A ) ) |
| 3 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 4 | cjmul | |- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( * ` ( A x. ( * ` A ) ) ) = ( ( * ` A ) x. ( * ` ( * ` A ) ) ) ) |
|
| 5 | 3 4 | mpdan | |- ( A e. CC -> ( * ` ( A x. ( * ` A ) ) ) = ( ( * ` A ) x. ( * ` ( * ` A ) ) ) ) |
| 6 | mulcom | |- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
|
| 7 | 3 6 | mpdan | |- ( A e. CC -> ( A x. ( * ` A ) ) = ( ( * ` A ) x. A ) ) |
| 8 | 2 5 7 | 3eqtr4d | |- ( A e. CC -> ( * ` ( A x. ( * ` A ) ) ) = ( A x. ( * ` A ) ) ) |
| 9 | mulcl | |- ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A x. ( * ` A ) ) e. CC ) |
|
| 10 | 3 9 | mpdan | |- ( A e. CC -> ( A x. ( * ` A ) ) e. CC ) |
| 11 | cjreb | |- ( ( A x. ( * ` A ) ) e. CC -> ( ( A x. ( * ` A ) ) e. RR <-> ( * ` ( A x. ( * ` A ) ) ) = ( A x. ( * ` A ) ) ) ) |
|
| 12 | 10 11 | syl | |- ( A e. CC -> ( ( A x. ( * ` A ) ) e. RR <-> ( * ` ( A x. ( * ` A ) ) ) = ( A x. ( * ` A ) ) ) ) |
| 13 | 8 12 | mpbird | |- ( A e. CC -> ( A x. ( * ` A ) ) e. RR ) |