This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group division. ( nnncan1 analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | |- X = ran G |
|
| abldiv.3 | |- D = ( /g ` G ) |
||
| Assertion | ablonnncan1 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D ( A D C ) ) = ( C D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | |- X = ran G |
|
| 2 | abldiv.3 | |- D = ( /g ` G ) |
|
| 3 | simpr1 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> A e. X ) |
|
| 4 | simpr2 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> B e. X ) |
|
| 5 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 6 | 1 2 | grpodivcl | |- ( ( G e. GrpOp /\ A e. X /\ C e. X ) -> ( A D C ) e. X ) |
| 7 | 5 6 | syl3an1 | |- ( ( G e. AbelOp /\ A e. X /\ C e. X ) -> ( A D C ) e. X ) |
| 8 | 7 | 3adant3r2 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D C ) e. X ) |
| 9 | 3 4 8 | 3jca | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( A D C ) e. X ) ) |
| 10 | 1 2 | ablodiv32 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ ( A D C ) e. X ) ) -> ( ( A D B ) D ( A D C ) ) = ( ( A D ( A D C ) ) D B ) ) |
| 11 | 9 10 | syldan | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D ( A D C ) ) = ( ( A D ( A D C ) ) D B ) ) |
| 12 | 1 2 | ablonncan | |- ( ( G e. AbelOp /\ A e. X /\ C e. X ) -> ( A D ( A D C ) ) = C ) |
| 13 | 12 | 3adant3r2 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A D ( A D C ) ) = C ) |
| 14 | 13 | oveq1d | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D ( A D C ) ) D B ) = ( C D B ) ) |
| 15 | 11 14 | eqtrd | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A D B ) D ( A D C ) ) = ( C D B ) ) |