This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group division. ( nncan analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | |- X = ran G |
|
| abldiv.3 | |- D = ( /g ` G ) |
||
| Assertion | ablonncan | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D ( A D B ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | |- X = ran G |
|
| 2 | abldiv.3 | |- D = ( /g ` G ) |
|
| 3 | id | |- ( ( A e. X /\ A e. X /\ B e. X ) -> ( A e. X /\ A e. X /\ B e. X ) ) |
|
| 4 | 3 | 3anidm12 | |- ( ( A e. X /\ B e. X ) -> ( A e. X /\ A e. X /\ B e. X ) ) |
| 5 | 1 2 | ablodivdiv | |- ( ( G e. AbelOp /\ ( A e. X /\ A e. X /\ B e. X ) ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) |
| 6 | 4 5 | sylan2 | |- ( ( G e. AbelOp /\ ( A e. X /\ B e. X ) ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) |
| 7 | 6 | 3impb | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D ( A D B ) ) = ( ( A D A ) G B ) ) |
| 8 | ablogrpo | |- ( G e. AbelOp -> G e. GrpOp ) |
|
| 9 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 10 | 1 2 9 | grpodivid | |- ( ( G e. GrpOp /\ A e. X ) -> ( A D A ) = ( GId ` G ) ) |
| 11 | 8 10 | sylan | |- ( ( G e. AbelOp /\ A e. X ) -> ( A D A ) = ( GId ` G ) ) |
| 12 | 11 | 3adant3 | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D A ) = ( GId ` G ) ) |
| 13 | 12 | oveq1d | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( ( A D A ) G B ) = ( ( GId ` G ) G B ) ) |
| 14 | 1 9 | grpolid | |- ( ( G e. GrpOp /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) |
| 15 | 8 14 | sylan | |- ( ( G e. AbelOp /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) |
| 16 | 15 | 3adant2 | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( ( GId ` G ) G B ) = B ) |
| 17 | 7 13 16 | 3eqtrd | |- ( ( G e. AbelOp /\ A e. X /\ B e. X ) -> ( A D ( A D B ) ) = B ) |