This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group division. ( nncan analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abldiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | ||
| Assertion | ablonncan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abldiv.1 | ⊢ 𝑋 = ran 𝐺 | |
| 2 | abldiv.3 | ⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) | |
| 3 | id | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) | |
| 4 | 3 | 3anidm12 | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
| 5 | 1 2 | ablodivdiv | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) |
| 7 | 6 | 3impb | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) ) |
| 8 | ablogrpo | ⊢ ( 𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp ) | |
| 9 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 10 | 1 2 9 | grpodivid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 11 | 8 10 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐴 ) = ( GId ‘ 𝐺 ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐷 𝐴 ) 𝐺 𝐵 ) = ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) ) |
| 14 | 1 9 | grpolid | ⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
| 15 | 8 14 | sylan | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
| 16 | 15 | 3adant2 | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐺 𝐵 ) = 𝐵 ) |
| 17 | 7 13 16 | 3eqtrd | ⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 ( 𝐴 𝐷 𝐵 ) ) = 𝐵 ) |