This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opbrop.1 | |- ( ( ( z = A /\ w = B ) /\ ( v = C /\ u = D ) ) -> ( ph <-> ps ) ) |
|
| opbrop.2 | |- R = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) } |
||
| Assertion | opbrop | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. R <. C , D >. <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opbrop.1 | |- ( ( ( z = A /\ w = B ) /\ ( v = C /\ u = D ) ) -> ( ph <-> ps ) ) |
|
| 2 | opbrop.2 | |- R = { <. x , y >. | ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) } |
|
| 3 | opelxpi | |- ( ( A e. S /\ B e. S ) -> <. A , B >. e. ( S X. S ) ) |
|
| 4 | opelxpi | |- ( ( C e. S /\ D e. S ) -> <. C , D >. e. ( S X. S ) ) |
|
| 5 | 3 4 | anim12i | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) ) |
| 6 | opex | |- <. A , B >. e. _V |
|
| 7 | opex | |- <. C , D >. e. _V |
|
| 8 | eleq1 | |- ( x = <. A , B >. -> ( x e. ( S X. S ) <-> <. A , B >. e. ( S X. S ) ) ) |
|
| 9 | 8 | anbi1d | |- ( x = <. A , B >. -> ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) <-> ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) ) ) |
| 10 | eqeq1 | |- ( x = <. A , B >. -> ( x = <. z , w >. <-> <. A , B >. = <. z , w >. ) ) |
|
| 11 | 10 | anbi1d | |- ( x = <. A , B >. -> ( ( x = <. z , w >. /\ y = <. v , u >. ) <-> ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) ) ) |
| 12 | 11 | anbi1d | |- ( x = <. A , B >. -> ( ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) ) |
| 13 | 12 | 4exbidv | |- ( x = <. A , B >. -> ( E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) ) |
| 14 | 9 13 | anbi12d | |- ( x = <. A , B >. -> ( ( ( x e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) ) ) |
| 15 | eleq1 | |- ( y = <. C , D >. -> ( y e. ( S X. S ) <-> <. C , D >. e. ( S X. S ) ) ) |
|
| 16 | 15 | anbi2d | |- ( y = <. C , D >. -> ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) <-> ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) ) ) |
| 17 | eqeq1 | |- ( y = <. C , D >. -> ( y = <. v , u >. <-> <. C , D >. = <. v , u >. ) ) |
|
| 18 | 17 | anbi2d | |- ( y = <. C , D >. -> ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) <-> ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) ) ) |
| 19 | 18 | anbi1d | |- ( y = <. C , D >. -> ( ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) |
| 20 | 19 | 4exbidv | |- ( y = <. C , D >. -> ( E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) <-> E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) |
| 21 | 16 20 | anbi12d | |- ( y = <. C , D >. -> ( ( ( <. A , B >. e. ( S X. S ) /\ y e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ y = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) ) |
| 22 | 6 7 14 21 2 | brab | |- ( <. A , B >. R <. C , D >. <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) ) |
| 23 | 1 | copsex4g | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) <-> ps ) ) |
| 24 | 23 | anbi2d | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ E. z E. w E. v E. u ( ( <. A , B >. = <. z , w >. /\ <. C , D >. = <. v , u >. ) /\ ph ) ) <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ ps ) ) ) |
| 25 | 22 24 | bitrid | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. R <. C , D >. <-> ( ( <. A , B >. e. ( S X. S ) /\ <. C , D >. e. ( S X. S ) ) /\ ps ) ) ) |
| 26 | 5 25 | mpbirand | |- ( ( ( A e. S /\ B e. S ) /\ ( C e. S /\ D e. S ) ) -> ( <. A , B >. R <. C , D >. <-> ps ) ) |