This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Having a countable subbase is a sufficient condition for second-countability. (Contributed by Jeff Hankins, 17-Jan-2010) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndcsb | |- ( J e. 2ndc <-> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | |- ( J e. 2ndc <-> E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) ) |
|
| 2 | df-rex | |- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) <-> E. x ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) ) |
|
| 3 | simprl | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> x ~<_ _om ) |
|
| 4 | ssfii | |- ( x e. TopBases -> x C_ ( fi ` x ) ) |
|
| 5 | fvex | |- ( topGen ` x ) e. _V |
|
| 6 | bastg | |- ( x e. TopBases -> x C_ ( topGen ` x ) ) |
|
| 7 | 6 | adantr | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> x C_ ( topGen ` x ) ) |
| 8 | fiss | |- ( ( ( topGen ` x ) e. _V /\ x C_ ( topGen ` x ) ) -> ( fi ` x ) C_ ( fi ` ( topGen ` x ) ) ) |
|
| 9 | 5 7 8 | sylancr | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` x ) C_ ( fi ` ( topGen ` x ) ) ) |
| 10 | tgcl | |- ( x e. TopBases -> ( topGen ` x ) e. Top ) |
|
| 11 | 10 | adantr | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) e. Top ) |
| 12 | fitop | |- ( ( topGen ` x ) e. Top -> ( fi ` ( topGen ` x ) ) = ( topGen ` x ) ) |
|
| 13 | 11 12 | syl | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` ( topGen ` x ) ) = ( topGen ` x ) ) |
| 14 | 9 13 | sseqtrd | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( fi ` x ) C_ ( topGen ` x ) ) |
| 15 | 2basgen | |- ( ( x C_ ( fi ` x ) /\ ( fi ` x ) C_ ( topGen ` x ) ) -> ( topGen ` x ) = ( topGen ` ( fi ` x ) ) ) |
|
| 16 | 4 14 15 | syl2an2r | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = ( topGen ` ( fi ` x ) ) ) |
| 17 | simprr | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` x ) = J ) |
|
| 18 | 16 17 | eqtr3d | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( topGen ` ( fi ` x ) ) = J ) |
| 19 | 3 18 | jca | |- ( ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
| 20 | 19 | eximi | |- ( E. x ( x e. TopBases /\ ( x ~<_ _om /\ ( topGen ` x ) = J ) ) -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
| 21 | 2 20 | sylbi | |- ( E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = J ) -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
| 22 | 1 21 | sylbi | |- ( J e. 2ndc -> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
| 23 | fibas | |- ( fi ` x ) e. TopBases |
|
| 24 | simpl | |- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> x ~<_ _om ) |
|
| 25 | fictb | |- ( x e. _V -> ( x ~<_ _om <-> ( fi ` x ) ~<_ _om ) ) |
|
| 26 | 25 | elv | |- ( x ~<_ _om <-> ( fi ` x ) ~<_ _om ) |
| 27 | 24 26 | sylib | |- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( fi ` x ) ~<_ _om ) |
| 28 | simpr | |- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( topGen ` ( fi ` x ) ) = J ) |
|
| 29 | 27 28 | jca | |- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |
| 30 | breq1 | |- ( y = ( fi ` x ) -> ( y ~<_ _om <-> ( fi ` x ) ~<_ _om ) ) |
|
| 31 | fveqeq2 | |- ( y = ( fi ` x ) -> ( ( topGen ` y ) = J <-> ( topGen ` ( fi ` x ) ) = J ) ) |
|
| 32 | 30 31 | anbi12d | |- ( y = ( fi ` x ) -> ( ( y ~<_ _om /\ ( topGen ` y ) = J ) <-> ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) ) |
| 33 | 32 | rspcev | |- ( ( ( fi ` x ) e. TopBases /\ ( ( fi ` x ) ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) -> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) |
| 34 | 23 29 33 | sylancr | |- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) |
| 35 | is2ndc | |- ( J e. 2ndc <-> E. y e. TopBases ( y ~<_ _om /\ ( topGen ` y ) = J ) ) |
|
| 36 | 34 35 | sylibr | |- ( ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> J e. 2ndc ) |
| 37 | 36 | exlimiv | |- ( E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) -> J e. 2ndc ) |
| 38 | 22 37 | impbii | |- ( J e. 2ndc <-> E. x ( x ~<_ _om /\ ( topGen ` ( fi ` x ) ) = J ) ) |