This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two equivalent expressions for double existential uniqueness. Curiously, we can put E! on either of the internal conjuncts but not both. We can also commute E! x E! y using 2eu7 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 20-Feb-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu8 | |- ( E! x E! y ( E. x ph /\ E. y ph ) <-> E! x E! y ( E! x ph /\ E. y ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2eu2 | |- ( E! x E. y ph -> ( E! y E! x ph <-> E! y E. x ph ) ) |
|
| 2 | 1 | pm5.32i | |- ( ( E! x E. y ph /\ E! y E! x ph ) <-> ( E! x E. y ph /\ E! y E. x ph ) ) |
| 3 | nfeu1 | |- F/ x E! x ph |
|
| 4 | 3 | nfeu | |- F/ x E! y E! x ph |
| 5 | 4 | euan | |- ( E! x ( E! y E! x ph /\ E. y ph ) <-> ( E! y E! x ph /\ E! x E. y ph ) ) |
| 6 | ancom | |- ( ( E! x ph /\ E. y ph ) <-> ( E. y ph /\ E! x ph ) ) |
|
| 7 | 6 | eubii | |- ( E! y ( E! x ph /\ E. y ph ) <-> E! y ( E. y ph /\ E! x ph ) ) |
| 8 | nfe1 | |- F/ y E. y ph |
|
| 9 | 8 | euan | |- ( E! y ( E. y ph /\ E! x ph ) <-> ( E. y ph /\ E! y E! x ph ) ) |
| 10 | ancom | |- ( ( E. y ph /\ E! y E! x ph ) <-> ( E! y E! x ph /\ E. y ph ) ) |
|
| 11 | 7 9 10 | 3bitri | |- ( E! y ( E! x ph /\ E. y ph ) <-> ( E! y E! x ph /\ E. y ph ) ) |
| 12 | 11 | eubii | |- ( E! x E! y ( E! x ph /\ E. y ph ) <-> E! x ( E! y E! x ph /\ E. y ph ) ) |
| 13 | ancom | |- ( ( E! x E. y ph /\ E! y E! x ph ) <-> ( E! y E! x ph /\ E! x E. y ph ) ) |
|
| 14 | 5 12 13 | 3bitr4ri | |- ( ( E! x E. y ph /\ E! y E! x ph ) <-> E! x E! y ( E! x ph /\ E. y ph ) ) |
| 15 | 2eu7 | |- ( ( E! x E. y ph /\ E! y E. x ph ) <-> E! x E! y ( E. x ph /\ E. y ph ) ) |
|
| 16 | 2 14 15 | 3bitr3ri | |- ( E! x E! y ( E. x ph /\ E. y ph ) <-> E! x E! y ( E! x ph /\ E. y ph ) ) |