This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 3-Dec-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu2 | |- ( E! y E. x ph -> ( E! x E! y ph <-> E! x E. y ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo | |- ( E! y E. x ph -> E* y E. x ph ) |
|
| 2 | 2moex | |- ( E* y E. x ph -> A. x E* y ph ) |
|
| 3 | 2eu1 | |- ( A. x E* y ph -> ( E! x E! y ph <-> ( E! x E. y ph /\ E! y E. x ph ) ) ) |
|
| 4 | simpl | |- ( ( E! x E. y ph /\ E! y E. x ph ) -> E! x E. y ph ) |
|
| 5 | 3 4 | biimtrdi | |- ( A. x E* y ph -> ( E! x E! y ph -> E! x E. y ph ) ) |
| 6 | 1 2 5 | 3syl | |- ( E! y E. x ph -> ( E! x E! y ph -> E! x E. y ph ) ) |
| 7 | 2exeu | |- ( ( E! x E. y ph /\ E! y E. x ph ) -> E! x E! y ph ) |
|
| 8 | 7 | expcom | |- ( E! y E. x ph -> ( E! x E. y ph -> E! x E! y ph ) ) |
| 9 | 6 8 | impbid | |- ( E! y E. x ph -> ( E! x E! y ph <-> E! x E. y ph ) ) |