This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express "exactly one thing exists". To paraphrase the statement and explain the label: there Exists a Unique thing if and only if for All x , x Equals some given (and disjoint) y . Both sides are false in set theory, see Theorems neutru and dtru . (Contributed by NM, 5-Apr-2004) State the theorem using truth constant T. . (Revised by BJ, 7-Oct-2022) Reduce axiom dependencies. (Revised by Wolf Lammen, 2-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | euae | |- ( E! x T. <-> A. x x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | extru | |- E. x T. |
|
| 2 | 1 | biantrur | |- ( E. y A. x ( T. -> x = y ) <-> ( E. x T. /\ E. y A. x ( T. -> x = y ) ) ) |
| 3 | hbaev | |- ( A. x x = y -> A. y A. x x = y ) |
|
| 4 | 3 | 19.8w | |- ( A. x x = y -> E. y A. x x = y ) |
| 5 | hbnaev | |- ( -. A. x x = y -> A. y -. A. x x = y ) |
|
| 6 | alnex | |- ( A. y -. A. x x = y <-> -. E. y A. x x = y ) |
|
| 7 | 5 6 | sylib | |- ( -. A. x x = y -> -. E. y A. x x = y ) |
| 8 | 7 | con4i | |- ( E. y A. x x = y -> A. x x = y ) |
| 9 | 4 8 | impbii | |- ( A. x x = y <-> E. y A. x x = y ) |
| 10 | trut | |- ( x = y <-> ( T. -> x = y ) ) |
|
| 11 | 10 | albii | |- ( A. x x = y <-> A. x ( T. -> x = y ) ) |
| 12 | 11 | exbii | |- ( E. y A. x x = y <-> E. y A. x ( T. -> x = y ) ) |
| 13 | 9 12 | bitri | |- ( A. x x = y <-> E. y A. x ( T. -> x = y ) ) |
| 14 | eu3v | |- ( E! x T. <-> ( E. x T. /\ E. y A. x ( T. -> x = y ) ) ) |
|
| 15 | 2 13 14 | 3bitr4ri | |- ( E! x T. <-> A. x x = y ) |