This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two equivalent expressions for double existential uniqueness. Curiously, we can put E! on either of the internal conjuncts but not both. We can also commute E! x E! y using 2eu7 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 20-Feb-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2eu8 | ⊢ ( ∃! 𝑥 ∃! 𝑦 ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ∃! 𝑥 ∃! 𝑦 ( ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2eu2 | ⊢ ( ∃! 𝑥 ∃ 𝑦 𝜑 → ( ∃! 𝑦 ∃! 𝑥 𝜑 ↔ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) | |
| 2 | 1 | pm5.32i | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ↔ ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ) |
| 3 | nfeu1 | ⊢ Ⅎ 𝑥 ∃! 𝑥 𝜑 | |
| 4 | 3 | nfeu | ⊢ Ⅎ 𝑥 ∃! 𝑦 ∃! 𝑥 𝜑 |
| 5 | 4 | euan | ⊢ ( ∃! 𝑥 ( ∃! 𝑦 ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ( ∃! 𝑦 ∃! 𝑥 𝜑 ∧ ∃! 𝑥 ∃ 𝑦 𝜑 ) ) |
| 6 | ancom | ⊢ ( ( ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ( ∃ 𝑦 𝜑 ∧ ∃! 𝑥 𝜑 ) ) | |
| 7 | 6 | eubii | ⊢ ( ∃! 𝑦 ( ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ∃! 𝑦 ( ∃ 𝑦 𝜑 ∧ ∃! 𝑥 𝜑 ) ) |
| 8 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 𝜑 | |
| 9 | 8 | euan | ⊢ ( ∃! 𝑦 ( ∃ 𝑦 𝜑 ∧ ∃! 𝑥 𝜑 ) ↔ ( ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ) |
| 10 | ancom | ⊢ ( ( ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ↔ ( ∃! 𝑦 ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ) | |
| 11 | 7 9 10 | 3bitri | ⊢ ( ∃! 𝑦 ( ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ( ∃! 𝑦 ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ) |
| 12 | 11 | eubii | ⊢ ( ∃! 𝑥 ∃! 𝑦 ( ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ∃! 𝑥 ( ∃! 𝑦 ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ) |
| 13 | ancom | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ↔ ( ∃! 𝑦 ∃! 𝑥 𝜑 ∧ ∃! 𝑥 ∃ 𝑦 𝜑 ) ) | |
| 14 | 5 12 13 | 3bitr4ri | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃! 𝑥 𝜑 ) ↔ ∃! 𝑥 ∃! 𝑦 ( ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ) |
| 15 | 2eu7 | ⊢ ( ( ∃! 𝑥 ∃ 𝑦 𝜑 ∧ ∃! 𝑦 ∃ 𝑥 𝜑 ) ↔ ∃! 𝑥 ∃! 𝑦 ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ) | |
| 16 | 2 14 15 | 3bitr3ri | ⊢ ( ∃! 𝑥 ∃! 𝑦 ( ∃ 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ↔ ∃! 𝑥 ∃! 𝑦 ( ∃! 𝑥 𝜑 ∧ ∃ 𝑦 𝜑 ) ) |