This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005) (Proof shortened by Andrew Salmon, 9-Jul-2011) (Proof shortened by Wolf Lammen, 24-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | moanim.1 | |- F/ x ph |
|
| Assertion | euan | |- ( E! x ( ph /\ ps ) <-> ( ph /\ E! x ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moanim.1 | |- F/ x ph |
|
| 2 | euex | |- ( E! x ( ph /\ ps ) -> E. x ( ph /\ ps ) ) |
|
| 3 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
| 4 | 1 3 | exlimi | |- ( E. x ( ph /\ ps ) -> ph ) |
| 5 | 2 4 | syl | |- ( E! x ( ph /\ ps ) -> ph ) |
| 6 | ibar | |- ( ph -> ( ps <-> ( ph /\ ps ) ) ) |
|
| 7 | 1 6 | eubid | |- ( ph -> ( E! x ps <-> E! x ( ph /\ ps ) ) ) |
| 8 | 7 | biimprcd | |- ( E! x ( ph /\ ps ) -> ( ph -> E! x ps ) ) |
| 9 | 5 8 | jcai | |- ( E! x ( ph /\ ps ) -> ( ph /\ E! x ps ) ) |
| 10 | 7 | biimpa | |- ( ( ph /\ E! x ps ) -> E! x ( ph /\ ps ) ) |
| 11 | 9 10 | impbii | |- ( E! x ( ph /\ ps ) <-> ( ph /\ E! x ps ) ) |