This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ellim | |- ( Lim A -> 2o e. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlim0 | |- -. Lim (/) |
|
| 2 | limeq | |- ( A = (/) -> ( Lim A <-> Lim (/) ) ) |
|
| 3 | 1 2 | mtbiri | |- ( A = (/) -> -. Lim A ) |
| 4 | 3 | necon2ai | |- ( Lim A -> A =/= (/) ) |
| 5 | nlim1 | |- -. Lim 1o |
|
| 6 | limeq | |- ( A = 1o -> ( Lim A <-> Lim 1o ) ) |
|
| 7 | 5 6 | mtbiri | |- ( A = 1o -> -. Lim A ) |
| 8 | 7 | necon2ai | |- ( Lim A -> A =/= 1o ) |
| 9 | nlim2 | |- -. Lim 2o |
|
| 10 | limeq | |- ( A = 2o -> ( Lim A <-> Lim 2o ) ) |
|
| 11 | 9 10 | mtbiri | |- ( A = 2o -> -. Lim A ) |
| 12 | 11 | necon2ai | |- ( Lim A -> A =/= 2o ) |
| 13 | limord | |- ( Lim A -> Ord A ) |
|
| 14 | ord2eln012 | |- ( Ord A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) |
|
| 15 | 13 14 | syl | |- ( Lim A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) |
| 16 | 4 8 12 15 | mpbir3and | |- ( Lim A -> 2o e. A ) |