This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ellim | ⊢ ( Lim 𝐴 → 2o ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlim0 | ⊢ ¬ Lim ∅ | |
| 2 | limeq | ⊢ ( 𝐴 = ∅ → ( Lim 𝐴 ↔ Lim ∅ ) ) | |
| 3 | 1 2 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ Lim 𝐴 ) |
| 4 | 3 | necon2ai | ⊢ ( Lim 𝐴 → 𝐴 ≠ ∅ ) |
| 5 | nlim1 | ⊢ ¬ Lim 1o | |
| 6 | limeq | ⊢ ( 𝐴 = 1o → ( Lim 𝐴 ↔ Lim 1o ) ) | |
| 7 | 5 6 | mtbiri | ⊢ ( 𝐴 = 1o → ¬ Lim 𝐴 ) |
| 8 | 7 | necon2ai | ⊢ ( Lim 𝐴 → 𝐴 ≠ 1o ) |
| 9 | nlim2 | ⊢ ¬ Lim 2o | |
| 10 | limeq | ⊢ ( 𝐴 = 2o → ( Lim 𝐴 ↔ Lim 2o ) ) | |
| 11 | 9 10 | mtbiri | ⊢ ( 𝐴 = 2o → ¬ Lim 𝐴 ) |
| 12 | 11 | necon2ai | ⊢ ( Lim 𝐴 → 𝐴 ≠ 2o ) |
| 13 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 14 | ord2eln012 | ⊢ ( Ord 𝐴 → ( 2o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( Lim 𝐴 → ( 2o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) ) ) |
| 16 | 4 8 12 15 | mpbir3and | ⊢ ( Lim 𝐴 → 2o ∈ 𝐴 ) |