This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlim2 | |- -. Lim 2o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex | |- 1o e. _V |
|
| 2 | 1 | prid2 | |- 1o e. { (/) , 1o } |
| 3 | df2o3 | |- 2o = { (/) , 1o } |
|
| 4 | 2 3 | eleqtrri | |- 1o e. 2o |
| 5 | 1on | |- 1o e. On |
|
| 6 | 5 | onirri | |- -. 1o e. 1o |
| 7 | eleq2 | |- ( 2o = 1o -> ( 1o e. 2o <-> 1o e. 1o ) ) |
|
| 8 | 6 7 | mtbiri | |- ( 2o = 1o -> -. 1o e. 2o ) |
| 9 | 4 8 | mt2 | |- -. 2o = 1o |
| 10 | 9 | neir | |- 2o =/= 1o |
| 11 | 3 | unieqi | |- U. 2o = U. { (/) , 1o } |
| 12 | 0ex | |- (/) e. _V |
|
| 13 | 12 1 | unipr | |- U. { (/) , 1o } = ( (/) u. 1o ) |
| 14 | 0un | |- ( (/) u. 1o ) = 1o |
|
| 15 | 11 13 14 | 3eqtri | |- U. 2o = 1o |
| 16 | 10 15 | neeqtrri | |- 2o =/= U. 2o |
| 17 | 16 | neii | |- -. 2o = U. 2o |
| 18 | simp3 | |- ( ( Ord 2o /\ 2o =/= (/) /\ 2o = U. 2o ) -> 2o = U. 2o ) |
|
| 19 | 17 18 | mto | |- -. ( Ord 2o /\ 2o =/= (/) /\ 2o = U. 2o ) |
| 20 | df-lim | |- ( Lim 2o <-> ( Ord 2o /\ 2o =/= (/) /\ 2o = U. 2o ) ) |
|
| 21 | 19 20 | mtbir | |- -. Lim 2o |