This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for subtraction and addition. (Contributed by NM, 20-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2addsub | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) + C ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | add32 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
|
| 2 | 1 | 3expa | |- ( ( ( A e. CC /\ B e. CC ) /\ C e. CC ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
| 3 | 2 | adantrr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
| 4 | 3 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) + C ) - D ) = ( ( ( A + C ) + B ) - D ) ) |
| 5 | addcl | |- ( ( A e. CC /\ C e. CC ) -> ( A + C ) e. CC ) |
|
| 6 | addsub | |- ( ( ( A + C ) e. CC /\ B e. CC /\ D e. CC ) -> ( ( ( A + C ) + B ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
|
| 7 | 6 | 3expb | |- ( ( ( A + C ) e. CC /\ ( B e. CC /\ D e. CC ) ) -> ( ( ( A + C ) + B ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
| 8 | 5 7 | sylan | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( ( A + C ) + B ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
| 9 | 8 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + C ) + B ) - D ) = ( ( ( A + C ) - D ) + B ) ) |
| 10 | 4 9 | eqtrd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) + C ) - D ) = ( ( ( A + C ) - D ) + B ) ) |