This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law for subtraction and addition. (Contributed by NM, 20-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2addsub | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) + 𝐶 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | add32 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐶 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) ) |
| 3 | 2 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + 𝐶 ) = ( ( 𝐴 + 𝐶 ) + 𝐵 ) ) |
| 4 | 3 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) + 𝐶 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) + 𝐵 ) − 𝐷 ) ) |
| 5 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 + 𝐶 ) ∈ ℂ ) | |
| 6 | addsub | ⊢ ( ( ( 𝐴 + 𝐶 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → ( ( ( 𝐴 + 𝐶 ) + 𝐵 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) | |
| 7 | 6 | 3expb | ⊢ ( ( ( 𝐴 + 𝐶 ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐶 ) + 𝐵 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) |
| 8 | 5 7 | sylan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐶 ) + 𝐵 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) |
| 9 | 8 | an4s | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐶 ) + 𝐵 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) |
| 10 | 4 9 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) + 𝐶 ) − 𝐷 ) = ( ( ( 𝐴 + 𝐶 ) − 𝐷 ) + 𝐵 ) ) |