This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for 1wlkd . (Contributed by AV, 22-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1wlkd.p | |- P = <" X Y "> |
|
| 1wlkd.f | |- F = <" J "> |
||
| 1wlkd.x | |- ( ph -> X e. V ) |
||
| 1wlkd.y | |- ( ph -> Y e. V ) |
||
| 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
||
| 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
||
| Assertion | 1wlkdlem2 | |- ( ph -> X e. ( I ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | |- P = <" X Y "> |
|
| 2 | 1wlkd.f | |- F = <" J "> |
|
| 3 | 1wlkd.x | |- ( ph -> X e. V ) |
|
| 4 | 1wlkd.y | |- ( ph -> Y e. V ) |
|
| 5 | 1wlkd.l | |- ( ( ph /\ X = Y ) -> ( I ` J ) = { X } ) |
|
| 6 | 1wlkd.j | |- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( I ` J ) ) |
|
| 7 | snidg | |- ( X e. V -> X e. { X } ) |
|
| 8 | 3 7 | syl | |- ( ph -> X e. { X } ) |
| 9 | 8 | adantr | |- ( ( ph /\ X = Y ) -> X e. { X } ) |
| 10 | 9 5 | eleqtrrd | |- ( ( ph /\ X = Y ) -> X e. ( I ` J ) ) |
| 11 | 4 | adantr | |- ( ( ph /\ X =/= Y ) -> Y e. V ) |
| 12 | prssg | |- ( ( X e. V /\ Y e. V ) -> ( ( X e. ( I ` J ) /\ Y e. ( I ` J ) ) <-> { X , Y } C_ ( I ` J ) ) ) |
|
| 13 | 3 11 12 | syl2an2r | |- ( ( ph /\ X =/= Y ) -> ( ( X e. ( I ` J ) /\ Y e. ( I ` J ) ) <-> { X , Y } C_ ( I ` J ) ) ) |
| 14 | 6 13 | mpbird | |- ( ( ph /\ X =/= Y ) -> ( X e. ( I ` J ) /\ Y e. ( I ` J ) ) ) |
| 15 | 14 | simpld | |- ( ( ph /\ X =/= Y ) -> X e. ( I ` J ) ) |
| 16 | 10 15 | pm2.61dane | |- ( ph -> X e. ( I ` J ) ) |