This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021) (Proof shortened by AV, 15-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1pthon2v.v | |- V = ( Vtx ` G ) |
|
| 1pthon2v.e | |- E = ( Edg ` G ) |
||
| Assertion | 1pthon2ve | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ { A , B } e. E ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1pthon2v.v | |- V = ( Vtx ` G ) |
|
| 2 | 1pthon2v.e | |- E = ( Edg ` G ) |
|
| 3 | id | |- ( { A , B } e. E -> { A , B } e. E ) |
|
| 4 | sseq2 | |- ( e = { A , B } -> ( { A , B } C_ e <-> { A , B } C_ { A , B } ) ) |
|
| 5 | 4 | adantl | |- ( ( { A , B } e. E /\ e = { A , B } ) -> ( { A , B } C_ e <-> { A , B } C_ { A , B } ) ) |
| 6 | ssidd | |- ( { A , B } e. E -> { A , B } C_ { A , B } ) |
|
| 7 | 3 5 6 | rspcedvd | |- ( { A , B } e. E -> E. e e. E { A , B } C_ e ) |
| 8 | 1 2 | 1pthon2v | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ E. e e. E { A , B } C_ e ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |
| 9 | 7 8 | syl3an3 | |- ( ( G e. UHGraph /\ ( A e. V /\ B e. V ) /\ { A , B } e. E ) -> E. f E. p f ( A ( PathsOn ` G ) B ) p ) |