This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for the class of cosets by the converse of R to be a subset of the identity class. (Contributed by Peter Mazsa, 28-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cosscnvssid3 | |- ( ,~ `' R C_ _I <-> A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cossssid3 | |- ( ,~ `' R C_ _I <-> A. x A. u A. v ( ( x `' R u /\ x `' R v ) -> u = v ) ) |
|
| 2 | alrot3 | |- ( A. x A. u A. v ( ( x `' R u /\ x `' R v ) -> u = v ) <-> A. u A. v A. x ( ( x `' R u /\ x `' R v ) -> u = v ) ) |
|
| 3 | brcnvg | |- ( ( x e. _V /\ u e. _V ) -> ( x `' R u <-> u R x ) ) |
|
| 4 | 3 | el2v | |- ( x `' R u <-> u R x ) |
| 5 | brcnvg | |- ( ( x e. _V /\ v e. _V ) -> ( x `' R v <-> v R x ) ) |
|
| 6 | 5 | el2v | |- ( x `' R v <-> v R x ) |
| 7 | 4 6 | anbi12i | |- ( ( x `' R u /\ x `' R v ) <-> ( u R x /\ v R x ) ) |
| 8 | 7 | imbi1i | |- ( ( ( x `' R u /\ x `' R v ) -> u = v ) <-> ( ( u R x /\ v R x ) -> u = v ) ) |
| 9 | 8 | 3albii | |- ( A. u A. v A. x ( ( x `' R u /\ x `' R v ) -> u = v ) <-> A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) ) |
| 10 | 1 2 9 | 3bitri | |- ( ,~ `' R C_ _I <-> A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) ) |