This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cosets by the converse range Cartesian product. (Contributed by Peter Mazsa, 19-Apr-2020) (Revised by Peter Mazsa, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1cosscnvxrn | ⊢ ≀ ◡ ( 𝐴 ⋉ 𝐵 ) = ( ≀ ◡ 𝐴 ∩ ≀ ◡ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br1cosscnvxrn | ⊢ ( ( 𝑥 ∈ V ∧ 𝑦 ∈ V ) → ( 𝑥 ≀ ◡ ( 𝐴 ⋉ 𝐵 ) 𝑦 ↔ ( 𝑥 ≀ ◡ 𝐴 𝑦 ∧ 𝑥 ≀ ◡ 𝐵 𝑦 ) ) ) | |
| 2 | 1 | el2v | ⊢ ( 𝑥 ≀ ◡ ( 𝐴 ⋉ 𝐵 ) 𝑦 ↔ ( 𝑥 ≀ ◡ 𝐴 𝑦 ∧ 𝑥 ≀ ◡ 𝐵 𝑦 ) ) |
| 3 | 2 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ ( 𝐴 ⋉ 𝐵 ) 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ≀ ◡ 𝐴 𝑦 ∧ 𝑥 ≀ ◡ 𝐵 𝑦 ) } |
| 4 | inopab | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐴 𝑦 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐵 𝑦 } ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ≀ ◡ 𝐴 𝑦 ∧ 𝑥 ≀ ◡ 𝐵 𝑦 ) } | |
| 5 | 3 4 | eqtr4i | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ ( 𝐴 ⋉ 𝐵 ) 𝑦 } = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐴 𝑦 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐵 𝑦 } ) |
| 6 | relcoss | ⊢ Rel ≀ ◡ ( 𝐴 ⋉ 𝐵 ) | |
| 7 | dfrel4v | ⊢ ( Rel ≀ ◡ ( 𝐴 ⋉ 𝐵 ) ↔ ≀ ◡ ( 𝐴 ⋉ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ ( 𝐴 ⋉ 𝐵 ) 𝑦 } ) | |
| 8 | 6 7 | mpbi | ⊢ ≀ ◡ ( 𝐴 ⋉ 𝐵 ) = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ ( 𝐴 ⋉ 𝐵 ) 𝑦 } |
| 9 | relcoss | ⊢ Rel ≀ ◡ 𝐴 | |
| 10 | dfrel4v | ⊢ ( Rel ≀ ◡ 𝐴 ↔ ≀ ◡ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐴 𝑦 } ) | |
| 11 | 9 10 | mpbi | ⊢ ≀ ◡ 𝐴 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐴 𝑦 } |
| 12 | relcoss | ⊢ Rel ≀ ◡ 𝐵 | |
| 13 | dfrel4v | ⊢ ( Rel ≀ ◡ 𝐵 ↔ ≀ ◡ 𝐵 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐵 𝑦 } ) | |
| 14 | 12 13 | mpbi | ⊢ ≀ ◡ 𝐵 = { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐵 𝑦 } |
| 15 | 11 14 | ineq12i | ⊢ ( ≀ ◡ 𝐴 ∩ ≀ ◡ 𝐵 ) = ( { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐴 𝑦 } ∩ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 ≀ ◡ 𝐵 𝑦 } ) |
| 16 | 5 8 15 | 3eqtr4i | ⊢ ≀ ◡ ( 𝐴 ⋉ 𝐵 ) = ( ≀ ◡ 𝐴 ∩ ≀ ◡ 𝐵 ) |