This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the zero rising factorial at natural N . (Contributed by Scott Fenton, 17-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0risefac | ⊢ ( 𝑁 ∈ ℕ → ( 0 RiseFac 𝑁 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | ⊢ 0 ∈ ℂ | |
| 2 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 3 | risefallfac | ⊢ ( ( 0 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 0 FallFac 𝑁 ) ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝑁 ∈ ℕ → ( 0 RiseFac 𝑁 ) = ( ( - 1 ↑ 𝑁 ) · ( - 0 FallFac 𝑁 ) ) ) |
| 5 | neg0 | ⊢ - 0 = 0 | |
| 6 | 5 | oveq1i | ⊢ ( - 0 FallFac 𝑁 ) = ( 0 FallFac 𝑁 ) |
| 7 | 0fallfac | ⊢ ( 𝑁 ∈ ℕ → ( 0 FallFac 𝑁 ) = 0 ) | |
| 8 | 6 7 | eqtrid | ⊢ ( 𝑁 ∈ ℕ → ( - 0 FallFac 𝑁 ) = 0 ) |
| 9 | 8 | oveq2d | ⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ 𝑁 ) · ( - 0 FallFac 𝑁 ) ) = ( ( - 1 ↑ 𝑁 ) · 0 ) ) |
| 10 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 11 | expcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( - 1 ↑ 𝑁 ) ∈ ℂ ) | |
| 12 | 10 2 11 | sylancr | ⊢ ( 𝑁 ∈ ℕ → ( - 1 ↑ 𝑁 ) ∈ ℂ ) |
| 13 | 12 | mul01d | ⊢ ( 𝑁 ∈ ℕ → ( ( - 1 ↑ 𝑁 ) · 0 ) = 0 ) |
| 14 | 4 9 13 | 3eqtrd | ⊢ ( 𝑁 ∈ ℕ → ( 0 RiseFac 𝑁 ) = 0 ) |