This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for binomfallfac . Closure law. (Contributed by Scott Fenton, 13-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | binomfallfaclem.1 | |- ( ph -> A e. CC ) |
|
| binomfallfaclem.2 | |- ( ph -> B e. CC ) |
||
| binomfallfaclem.3 | |- ( ph -> N e. NN0 ) |
||
| Assertion | binomfallfaclem1 | |- ( ( ph /\ K e. ( 0 ... N ) ) -> ( ( N _C K ) x. ( ( A FallFac ( N - K ) ) x. ( B FallFac ( K + 1 ) ) ) ) e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binomfallfaclem.1 | |- ( ph -> A e. CC ) |
|
| 2 | binomfallfaclem.2 | |- ( ph -> B e. CC ) |
|
| 3 | binomfallfaclem.3 | |- ( ph -> N e. NN0 ) |
|
| 4 | elfzelz | |- ( K e. ( 0 ... N ) -> K e. ZZ ) |
|
| 5 | bccl | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) e. NN0 ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( ph /\ K e. ( 0 ... N ) ) -> ( N _C K ) e. NN0 ) |
| 7 | 6 | nn0cnd | |- ( ( ph /\ K e. ( 0 ... N ) ) -> ( N _C K ) e. CC ) |
| 8 | fznn0sub | |- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
|
| 9 | fallfaccl | |- ( ( A e. CC /\ ( N - K ) e. NN0 ) -> ( A FallFac ( N - K ) ) e. CC ) |
|
| 10 | 1 8 9 | syl2an | |- ( ( ph /\ K e. ( 0 ... N ) ) -> ( A FallFac ( N - K ) ) e. CC ) |
| 11 | elfznn0 | |- ( K e. ( 0 ... N ) -> K e. NN0 ) |
|
| 12 | peano2nn0 | |- ( K e. NN0 -> ( K + 1 ) e. NN0 ) |
|
| 13 | 11 12 | syl | |- ( K e. ( 0 ... N ) -> ( K + 1 ) e. NN0 ) |
| 14 | fallfaccl | |- ( ( B e. CC /\ ( K + 1 ) e. NN0 ) -> ( B FallFac ( K + 1 ) ) e. CC ) |
|
| 15 | 2 13 14 | syl2an | |- ( ( ph /\ K e. ( 0 ... N ) ) -> ( B FallFac ( K + 1 ) ) e. CC ) |
| 16 | 10 15 | mulcld | |- ( ( ph /\ K e. ( 0 ... N ) ) -> ( ( A FallFac ( N - K ) ) x. ( B FallFac ( K + 1 ) ) ) e. CC ) |
| 17 | 7 16 | mulcld | |- ( ( ph /\ K e. ( 0 ... N ) ) -> ( ( N _C K ) x. ( ( A FallFac ( N - K ) ) x. ( B FallFac ( K + 1 ) ) ) ) e. CC ) |