This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pair of an empty set (of edges) and a second set (of vertices) is a closed walk if and only if the second set contains exactly one vertex (in an undirected graph). (Contributed by Alexander van der Vekens, 15-Mar-2018) (Revised by AV, 17-Feb-2021) (Revised by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 0clwlk.v | |- V = ( Vtx ` G ) |
|
| Assertion | 0clwlk | |- ( G e. X -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0clwlk.v | |- V = ( Vtx ` G ) |
|
| 2 | 1 | 0wlk | |- ( G e. X -> ( (/) ( Walks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 3 | 2 | anbi2d | |- ( G e. X -> ( ( ( P ` 0 ) = ( P ` ( # ` (/) ) ) /\ (/) ( Walks ` G ) P ) <-> ( ( P ` 0 ) = ( P ` ( # ` (/) ) ) /\ P : ( 0 ... 0 ) --> V ) ) ) |
| 4 | isclwlk | |- ( (/) ( ClWalks ` G ) P <-> ( (/) ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` (/) ) ) ) ) |
|
| 5 | 4 | biancomi | |- ( (/) ( ClWalks ` G ) P <-> ( ( P ` 0 ) = ( P ` ( # ` (/) ) ) /\ (/) ( Walks ` G ) P ) ) |
| 6 | hash0 | |- ( # ` (/) ) = 0 |
|
| 7 | 6 | eqcomi | |- 0 = ( # ` (/) ) |
| 8 | 7 | fveq2i | |- ( P ` 0 ) = ( P ` ( # ` (/) ) ) |
| 9 | 8 | biantrur | |- ( P : ( 0 ... 0 ) --> V <-> ( ( P ` 0 ) = ( P ` ( # ` (/) ) ) /\ P : ( 0 ... 0 ) --> V ) ) |
| 10 | 3 5 9 | 3bitr4g | |- ( G e. X -> ( (/) ( ClWalks ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |