This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0hmop | |- 0hop e. HrmOp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ho0f | |- 0hop : ~H --> ~H |
|
| 2 | ho0val | |- ( y e. ~H -> ( 0hop ` y ) = 0h ) |
|
| 3 | 2 | oveq2d | |- ( y e. ~H -> ( x .ih ( 0hop ` y ) ) = ( x .ih 0h ) ) |
| 4 | hi02 | |- ( x e. ~H -> ( x .ih 0h ) = 0 ) |
|
| 5 | 3 4 | sylan9eqr | |- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( 0hop ` y ) ) = 0 ) |
| 6 | ho0val | |- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
|
| 7 | 6 | oveq1d | |- ( x e. ~H -> ( ( 0hop ` x ) .ih y ) = ( 0h .ih y ) ) |
| 8 | hi01 | |- ( y e. ~H -> ( 0h .ih y ) = 0 ) |
|
| 9 | 7 8 | sylan9eq | |- ( ( x e. ~H /\ y e. ~H ) -> ( ( 0hop ` x ) .ih y ) = 0 ) |
| 10 | 5 9 | eqtr4d | |- ( ( x e. ~H /\ y e. ~H ) -> ( x .ih ( 0hop ` y ) ) = ( ( 0hop ` x ) .ih y ) ) |
| 11 | 10 | rgen2 | |- A. x e. ~H A. y e. ~H ( x .ih ( 0hop ` y ) ) = ( ( 0hop ` x ) .ih y ) |
| 12 | elhmop | |- ( 0hop e. HrmOp <-> ( 0hop : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( x .ih ( 0hop ` y ) ) = ( ( 0hop ` x ) .ih y ) ) ) |
|
| 13 | 1 11 12 | mpbir2an | |- 0hop e. HrmOp |