This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrinitorngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| zrinitorngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | ||
| zrinitorngc.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) | ||
| zrinitorngc.e | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| Assertion | zrzeroorngc | ⊢ ( 𝜑 → 𝑍 ∈ ( ZeroO ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrinitorngc.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 2 | zrinitorngc.c | ⊢ 𝐶 = ( RngCat ‘ 𝑈 ) | |
| 3 | zrinitorngc.z | ⊢ ( 𝜑 → 𝑍 ∈ ( Ring ∖ NzRing ) ) | |
| 4 | zrinitorngc.e | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 5 | 1 2 3 4 | zrinitorngc | ⊢ ( 𝜑 → 𝑍 ∈ ( InitO ‘ 𝐶 ) ) |
| 6 | 1 2 3 4 | zrtermorngc | ⊢ ( 𝜑 → 𝑍 ∈ ( TermO ‘ 𝐶 ) ) |
| 7 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | 2 | rngccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 10 | 1 9 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 11 | 3 | eldifad | ⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 12 | ringrng | ⊢ ( 𝑍 ∈ Ring → 𝑍 ∈ Rng ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → 𝑍 ∈ Rng ) |
| 14 | 4 13 | elind | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝑈 ∩ Rng ) ) |
| 15 | 2 7 1 | rngcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Rng ) ) |
| 16 | 14 15 | eleqtrrd | ⊢ ( 𝜑 → 𝑍 ∈ ( Base ‘ 𝐶 ) ) |
| 17 | 7 8 10 16 | iszeroo | ⊢ ( 𝜑 → ( 𝑍 ∈ ( ZeroO ‘ 𝐶 ) ↔ ( 𝑍 ∈ ( InitO ‘ 𝐶 ) ∧ 𝑍 ∈ ( TermO ‘ 𝐶 ) ) ) ) |
| 18 | 5 6 17 | mpbir2and | ⊢ ( 𝜑 → 𝑍 ∈ ( ZeroO ‘ 𝐶 ) ) |