This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is a zero object in the category of non-unital rings. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrinitorngc.u | |- ( ph -> U e. V ) |
|
| zrinitorngc.c | |- C = ( RngCat ` U ) |
||
| zrinitorngc.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
||
| zrinitorngc.e | |- ( ph -> Z e. U ) |
||
| Assertion | zrzeroorngc | |- ( ph -> Z e. ( ZeroO ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrinitorngc.u | |- ( ph -> U e. V ) |
|
| 2 | zrinitorngc.c | |- C = ( RngCat ` U ) |
|
| 3 | zrinitorngc.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
|
| 4 | zrinitorngc.e | |- ( ph -> Z e. U ) |
|
| 5 | 1 2 3 4 | zrinitorngc | |- ( ph -> Z e. ( InitO ` C ) ) |
| 6 | 1 2 3 4 | zrtermorngc | |- ( ph -> Z e. ( TermO ` C ) ) |
| 7 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | 2 | rngccat | |- ( U e. V -> C e. Cat ) |
| 10 | 1 9 | syl | |- ( ph -> C e. Cat ) |
| 11 | 3 | eldifad | |- ( ph -> Z e. Ring ) |
| 12 | ringrng | |- ( Z e. Ring -> Z e. Rng ) |
|
| 13 | 11 12 | syl | |- ( ph -> Z e. Rng ) |
| 14 | 4 13 | elind | |- ( ph -> Z e. ( U i^i Rng ) ) |
| 15 | 2 7 1 | rngcbas | |- ( ph -> ( Base ` C ) = ( U i^i Rng ) ) |
| 16 | 14 15 | eleqtrrd | |- ( ph -> Z e. ( Base ` C ) ) |
| 17 | 7 8 10 16 | iszeroo | |- ( ph -> ( Z e. ( ZeroO ` C ) <-> ( Z e. ( InitO ` C ) /\ Z e. ( TermO ` C ) ) ) ) |
| 18 | 5 6 17 | mpbir2and | |- ( ph -> Z e. ( ZeroO ` C ) ) |