This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordering of the Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znle2.y | |- Y = ( Z/nZ ` N ) |
|
| znle2.f | |- F = ( ( ZRHom ` Y ) |` W ) |
||
| znle2.w | |- W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
||
| znle2.l | |- .<_ = ( le ` Y ) |
||
| znleval.x | |- X = ( Base ` Y ) |
||
| Assertion | znleval2 | |- ( ( N e. NN0 /\ A e. X /\ B e. X ) -> ( A .<_ B <-> ( `' F ` A ) <_ ( `' F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znle2.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | znle2.f | |- F = ( ( ZRHom ` Y ) |` W ) |
|
| 3 | znle2.w | |- W = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
|
| 4 | znle2.l | |- .<_ = ( le ` Y ) |
|
| 5 | znleval.x | |- X = ( Base ` Y ) |
|
| 6 | 1 2 3 4 5 | znleval | |- ( N e. NN0 -> ( A .<_ B <-> ( A e. X /\ B e. X /\ ( `' F ` A ) <_ ( `' F ` B ) ) ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( N e. NN0 /\ A e. X /\ B e. X ) -> ( A .<_ B <-> ( A e. X /\ B e. X /\ ( `' F ` A ) <_ ( `' F ` B ) ) ) ) |
| 8 | 3simpc | |- ( ( N e. NN0 /\ A e. X /\ B e. X ) -> ( A e. X /\ B e. X ) ) |
|
| 9 | 8 | biantrurd | |- ( ( N e. NN0 /\ A e. X /\ B e. X ) -> ( ( `' F ` A ) <_ ( `' F ` B ) <-> ( ( A e. X /\ B e. X ) /\ ( `' F ` A ) <_ ( `' F ` B ) ) ) ) |
| 10 | df-3an | |- ( ( A e. X /\ B e. X /\ ( `' F ` A ) <_ ( `' F ` B ) ) <-> ( ( A e. X /\ B e. X ) /\ ( `' F ` A ) <_ ( `' F ` B ) ) ) |
|
| 11 | 9 10 | bitr4di | |- ( ( N e. NN0 /\ A e. X /\ B e. X ) -> ( ( `' F ` A ) <_ ( `' F ` B ) <-> ( A e. X /\ B e. X /\ ( `' F ` A ) <_ ( `' F ` B ) ) ) ) |
| 12 | 7 11 | bitr4d | |- ( ( N e. NN0 /\ A e. X /\ B e. X ) -> ( A .<_ B <-> ( `' F ` A ) <_ ( `' F ` B ) ) ) |