This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Z/nZ structure has n elements. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zntos.y | |- Y = ( Z/nZ ` N ) |
|
| znhash.1 | |- B = ( Base ` Y ) |
||
| Assertion | znhash | |- ( N e. NN -> ( # ` B ) = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zntos.y | |- Y = ( Z/nZ ` N ) |
|
| 2 | znhash.1 | |- B = ( Base ` Y ) |
|
| 3 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 4 | eqid | |- ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) = ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) |
|
| 5 | eqid | |- if ( N = 0 , ZZ , ( 0 ..^ N ) ) = if ( N = 0 , ZZ , ( 0 ..^ N ) ) |
|
| 6 | 1 2 4 5 | znf1o | |- ( N e. NN0 -> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> B ) |
| 7 | 3 6 | syl | |- ( N e. NN -> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> B ) |
| 8 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 9 | ifnefalse | |- ( N =/= 0 -> if ( N = 0 , ZZ , ( 0 ..^ N ) ) = ( 0 ..^ N ) ) |
|
| 10 | f1oeq2 | |- ( if ( N = 0 , ZZ , ( 0 ..^ N ) ) = ( 0 ..^ N ) -> ( ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> B <-> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : ( 0 ..^ N ) -1-1-onto-> B ) ) |
|
| 11 | 8 9 10 | 3syl | |- ( N e. NN -> ( ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : if ( N = 0 , ZZ , ( 0 ..^ N ) ) -1-1-onto-> B <-> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : ( 0 ..^ N ) -1-1-onto-> B ) ) |
| 12 | 7 11 | mpbid | |- ( N e. NN -> ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : ( 0 ..^ N ) -1-1-onto-> B ) |
| 13 | ovex | |- ( 0 ..^ N ) e. _V |
|
| 14 | 13 | f1oen | |- ( ( ( ZRHom ` Y ) |` if ( N = 0 , ZZ , ( 0 ..^ N ) ) ) : ( 0 ..^ N ) -1-1-onto-> B -> ( 0 ..^ N ) ~~ B ) |
| 15 | ensym | |- ( ( 0 ..^ N ) ~~ B -> B ~~ ( 0 ..^ N ) ) |
|
| 16 | hasheni | |- ( B ~~ ( 0 ..^ N ) -> ( # ` B ) = ( # ` ( 0 ..^ N ) ) ) |
|
| 17 | 12 14 15 16 | 4syl | |- ( N e. NN -> ( # ` B ) = ( # ` ( 0 ..^ N ) ) ) |
| 18 | hashfzo0 | |- ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) |
|
| 19 | 3 18 | syl | |- ( N e. NN -> ( # ` ( 0 ..^ N ) ) = N ) |
| 20 | 17 19 | eqtrd | |- ( N e. NN -> ( # ` B ) = N ) |