This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for znbas . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 9-Sep-2021) (Revised by AV, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znval2.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| znval2.u | ⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) | ||
| znval2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| znbaslem.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
| znbaslem.n | ⊢ ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx ) | ||
| Assertion | znbaslem | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ‘ 𝑈 ) = ( 𝐸 ‘ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval2.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| 2 | znval2.u | ⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) | |
| 3 | znval2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 4 | znbaslem.e | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 5 | znbaslem.n | ⊢ ( 𝐸 ‘ ndx ) ≠ ( le ‘ ndx ) | |
| 6 | 4 5 | setsnid | ⊢ ( 𝐸 ‘ 𝑈 ) = ( 𝐸 ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) |
| 7 | eqid | ⊢ ( le ‘ 𝑌 ) = ( le ‘ 𝑌 ) | |
| 8 | 1 2 3 7 | znval2 | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) |
| 9 | 8 | fveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ‘ 𝑌 ) = ( 𝐸 ‘ ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( le ‘ 𝑌 ) 〉 ) ) ) |
| 10 | 6 9 | eqtr4id | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐸 ‘ 𝑈 ) = ( 𝐸 ‘ 𝑌 ) ) |