This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Self-referential expression for the Z/nZ structure. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znval2.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| znval2.u | ⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) | ||
| znval2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| znval2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | ||
| Assertion | znval2 | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znval2.s | ⊢ 𝑆 = ( RSpan ‘ ℤring ) | |
| 2 | znval2.u | ⊢ 𝑈 = ( ℤring /s ( ℤring ~QG ( 𝑆 ‘ { 𝑁 } ) ) ) | |
| 3 | znval2.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 4 | znval2.l | ⊢ ≤ = ( le ‘ 𝑌 ) | |
| 5 | eqid | ⊢ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) = ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) | |
| 6 | eqid | ⊢ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) = if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) | |
| 7 | eqid | ⊢ ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) | |
| 8 | 1 2 3 5 6 7 | znval | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) 〉 ) ) |
| 9 | 1 2 3 5 6 4 | znle | ⊢ ( 𝑁 ∈ ℕ0 → ≤ = ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) ) |
| 10 | 9 | opeq2d | ⊢ ( 𝑁 ∈ ℕ0 → 〈 ( le ‘ ndx ) , ≤ 〉 = 〈 ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) 〉 ) |
| 11 | 10 | oveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑈 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ( ( ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ∘ ≤ ) ∘ ◡ ( ( ℤRHom ‘ 𝑈 ) ↾ if ( 𝑁 = 0 , ℤ , ( 0 ..^ 𝑁 ) ) ) ) 〉 ) ) |
| 12 | 8 11 | eqtr4d | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 = ( 𝑈 sSet 〈 ( le ‘ ndx ) , ≤ 〉 ) ) |