This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer N is less than or equal to a real, and we subtract a quantity less than 1 , then N is less than or equal to the result. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zltlesub.n | |- ( ph -> N e. ZZ ) |
|
| zltlesub.a | |- ( ph -> A e. RR ) |
||
| zltlesub.nlea | |- ( ph -> N <_ A ) |
||
| zltlesub.b | |- ( ph -> B e. RR ) |
||
| zltlesub.blt1 | |- ( ph -> B < 1 ) |
||
| zltlesub.asb | |- ( ph -> ( A - B ) e. ZZ ) |
||
| Assertion | zltlesub | |- ( ph -> N <_ ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zltlesub.n | |- ( ph -> N e. ZZ ) |
|
| 2 | zltlesub.a | |- ( ph -> A e. RR ) |
|
| 3 | zltlesub.nlea | |- ( ph -> N <_ A ) |
|
| 4 | zltlesub.b | |- ( ph -> B e. RR ) |
|
| 5 | zltlesub.blt1 | |- ( ph -> B < 1 ) |
|
| 6 | zltlesub.asb | |- ( ph -> ( A - B ) e. ZZ ) |
|
| 7 | 1 | zred | |- ( ph -> N e. RR ) |
| 8 | 6 | zred | |- ( ph -> ( A - B ) e. RR ) |
| 9 | 8 4 | readdcld | |- ( ph -> ( ( A - B ) + B ) e. RR ) |
| 10 | peano2re | |- ( ( A - B ) e. RR -> ( ( A - B ) + 1 ) e. RR ) |
|
| 11 | 8 10 | syl | |- ( ph -> ( ( A - B ) + 1 ) e. RR ) |
| 12 | 2 | recnd | |- ( ph -> A e. CC ) |
| 13 | 4 | recnd | |- ( ph -> B e. CC ) |
| 14 | 12 13 | npcand | |- ( ph -> ( ( A - B ) + B ) = A ) |
| 15 | 3 14 | breqtrrd | |- ( ph -> N <_ ( ( A - B ) + B ) ) |
| 16 | 1red | |- ( ph -> 1 e. RR ) |
|
| 17 | 4 16 8 5 | ltadd2dd | |- ( ph -> ( ( A - B ) + B ) < ( ( A - B ) + 1 ) ) |
| 18 | 7 9 11 15 17 | lelttrd | |- ( ph -> N < ( ( A - B ) + 1 ) ) |
| 19 | zleltp1 | |- ( ( N e. ZZ /\ ( A - B ) e. ZZ ) -> ( N <_ ( A - B ) <-> N < ( ( A - B ) + 1 ) ) ) |
|
| 20 | 1 6 19 | syl2anc | |- ( ph -> ( N <_ ( A - B ) <-> N < ( ( A - B ) + 1 ) ) ) |
| 21 | 18 20 | mpbird | |- ( ph -> N <_ ( A - B ) ) |