This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zlmbas and zlmplusg . (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| zlmlem.2 | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | ||
| zlmlem.3 | ⊢ ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) | ||
| zlmlem.4 | ⊢ ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) | ||
| Assertion | zlmlem | ⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmbas.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
| 2 | zlmlem.2 | ⊢ 𝐸 = Slot ( 𝐸 ‘ ndx ) | |
| 3 | zlmlem.3 | ⊢ ( 𝐸 ‘ ndx ) ≠ ( Scalar ‘ ndx ) | |
| 4 | zlmlem.4 | ⊢ ( 𝐸 ‘ ndx ) ≠ ( ·𝑠 ‘ ndx ) | |
| 5 | 2 3 | setsnid | ⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) |
| 6 | 2 4 | setsnid | ⊢ ( 𝐸 ‘ ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
| 7 | 5 6 | eqtri | ⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
| 8 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 9 | 1 8 | zlmval | ⊢ ( 𝐺 ∈ V → 𝑊 = ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝐺 ∈ V → ( 𝐸 ‘ 𝑊 ) = ( 𝐸 ‘ ( ( 𝐺 sSet 〈 ( Scalar ‘ ndx ) , ℤring 〉 ) sSet 〈 ( ·𝑠 ‘ ndx ) , ( .g ‘ 𝐺 ) 〉 ) ) ) |
| 11 | 7 10 | eqtr4id | ⊢ ( 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 12 | 2 | str0 | ⊢ ∅ = ( 𝐸 ‘ ∅ ) |
| 13 | 12 | eqcomi | ⊢ ( 𝐸 ‘ ∅ ) = ∅ |
| 14 | 13 1 | fveqprc | ⊢ ( ¬ 𝐺 ∈ V → ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) ) |
| 15 | 11 14 | pm2.61i | ⊢ ( 𝐸 ‘ 𝐺 ) = ( 𝐸 ‘ 𝑊 ) |