This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for zlmbas and zlmplusg . (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zlmbas.w | |- W = ( ZMod ` G ) |
|
| zlmlem.2 | |- E = Slot ( E ` ndx ) |
||
| zlmlem.3 | |- ( E ` ndx ) =/= ( Scalar ` ndx ) |
||
| zlmlem.4 | |- ( E ` ndx ) =/= ( .s ` ndx ) |
||
| Assertion | zlmlem | |- ( E ` G ) = ( E ` W ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmbas.w | |- W = ( ZMod ` G ) |
|
| 2 | zlmlem.2 | |- E = Slot ( E ` ndx ) |
|
| 3 | zlmlem.3 | |- ( E ` ndx ) =/= ( Scalar ` ndx ) |
|
| 4 | zlmlem.4 | |- ( E ` ndx ) =/= ( .s ` ndx ) |
|
| 5 | 2 3 | setsnid | |- ( E ` G ) = ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) |
| 6 | 2 4 | setsnid | |- ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 7 | 5 6 | eqtri | |- ( E ` G ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 8 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 9 | 1 8 | zlmval | |- ( G e. _V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
| 10 | 9 | fveq2d | |- ( G e. _V -> ( E ` W ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
| 11 | 7 10 | eqtr4id | |- ( G e. _V -> ( E ` G ) = ( E ` W ) ) |
| 12 | 2 | str0 | |- (/) = ( E ` (/) ) |
| 13 | 12 | eqcomi | |- ( E ` (/) ) = (/) |
| 14 | 13 1 | fveqprc | |- ( -. G e. _V -> ( E ` G ) = ( E ` W ) ) |
| 15 | 11 14 | pm2.61i | |- ( E ` G ) = ( E ` W ) |