This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inference based on the Axiom of Replacement. Typically, ph defines a function from x to y . (Contributed by NM, 26-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zfrepclf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| zfrepclf.2 | ⊢ 𝐴 ∈ V | ||
| zfrepclf.3 | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) | ||
| Assertion | zfrepclf | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrepclf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | zfrepclf.2 | ⊢ 𝐴 ∈ V | |
| 3 | zfrepclf.3 | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) | |
| 4 | 1 | nfeq2 | ⊢ Ⅎ 𝑥 𝑣 = 𝐴 |
| 5 | eleq2 | ⊢ ( 𝑣 = 𝐴 → ( 𝑥 ∈ 𝑣 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 6 | 5 3 | biimtrdi | ⊢ ( 𝑣 = 𝐴 → ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ) |
| 7 | 4 6 | alrimi | ⊢ ( 𝑣 = 𝐴 → ∀ 𝑥 ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) ) |
| 8 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 9 | 8 | axrep5 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑣 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ) |
| 10 | 7 9 | syl | ⊢ ( 𝑣 = 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ) |
| 11 | 5 | anbi1d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 12 | 4 11 | exbid | ⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 13 | 12 | bibi2d | ⊢ ( 𝑣 = 𝐴 → ( ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ↔ ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 14 | 13 | albidv | ⊢ ( 𝑣 = 𝐴 → ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 15 | 14 | exbidv | ⊢ ( 𝑣 = 𝐴 → ( ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑣 ∧ 𝜑 ) ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) ) |
| 16 | 10 15 | mpbid | ⊢ ( 𝑣 = 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) ) |
| 17 | 2 16 | vtocle | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |