This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inference based on the Axiom of Replacement. Typically, ph defines a function from x to y . (Contributed by NM, 26-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zfrep3cl.1 | ⊢ 𝐴 ∈ V | |
| zfrep3cl.2 | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) | ||
| Assertion | zfrep3cl | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrep3cl.1 | ⊢ 𝐴 ∈ V | |
| 2 | zfrep3cl.2 | ⊢ ( 𝑥 ∈ 𝐴 → ∃ 𝑧 ∀ 𝑦 ( 𝜑 → 𝑦 = 𝑧 ) ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 𝐴 | |
| 4 | 3 1 2 | zfrepclf | ⊢ ∃ 𝑧 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) |