This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inference based on the Axiom of Replacement. Typically, ph defines a function from x to y . (Contributed by NM, 26-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zfrepclf.1 | ||
| zfrepclf.2 | |||
| zfrepclf.3 | |||
| Assertion | zfrepclf |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfrepclf.1 | ||
| 2 | zfrepclf.2 | ||
| 3 | zfrepclf.3 | ||
| 4 | 1 | nfeq2 | |
| 5 | eleq2 | ||
| 6 | 5 3 | biimtrdi | |
| 7 | 4 6 | alrimi | |
| 8 | nfv | ||
| 9 | 8 | axrep5 | |
| 10 | 7 9 | syl | |
| 11 | 5 | anbi1d | |
| 12 | 4 11 | exbid | |
| 13 | 12 | bibi2d | |
| 14 | 13 | albidv | |
| 15 | 14 | exbidv | |
| 16 | 10 15 | mpbid | |
| 17 | 2 16 | vtocle |