This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Power Sets ax-pow , reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness" dtru . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfcndpow | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtru | ⊢ ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 2 | exnal | ⊢ ( ∃ 𝑦 ¬ 𝑦 = 𝑧 ↔ ¬ ∀ 𝑦 𝑦 = 𝑧 ) | |
| 3 | 1 2 | mpbir | ⊢ ∃ 𝑦 ¬ 𝑦 = 𝑧 |
| 4 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) | |
| 5 | axpownd | ⊢ ( ¬ 𝑦 = 𝑧 → ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) | |
| 6 | 4 5 | exlimi | ⊢ ( ∃ 𝑦 ¬ 𝑦 = 𝑧 → ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 7 | 3 6 | ax-mp | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) |
| 8 | 19.9v | ⊢ ( ∃ 𝑥 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) | |
| 9 | 19.3v | ⊢ ( ∀ 𝑧 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) | |
| 10 | 8 9 | imbi12i | ⊢ ( ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑦 ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) |
| 12 | 11 | imbi1i | ⊢ ( ( ∀ 𝑦 ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 14 | 13 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( ∃ 𝑥 𝑦 ∈ 𝑧 → ∀ 𝑧 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 15 | 7 14 | mpbi | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) |
| 16 | elequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 17 | elequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 18 | 16 17 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) ) |
| 19 | 18 | cbvalvw | ⊢ ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) ) |
| 20 | 19 | imbi1i | ⊢ ( ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 21 | 20 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 22 | 21 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) ) |
| 23 | 15 22 | mpbir | ⊢ ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑤 ( 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥 ) → 𝑧 ∈ 𝑦 ) |