This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Power Sets ax-pow , reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness" dtru . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfcndpow |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtru | ||
| 2 | exnal | ||
| 3 | 1 2 | mpbir | |
| 4 | nfe1 | ||
| 5 | axpownd | ||
| 6 | 4 5 | exlimi | |
| 7 | 3 6 | ax-mp | |
| 8 | 19.9v | ||
| 9 | 19.3v | ||
| 10 | 8 9 | imbi12i | |
| 11 | 10 | albii | |
| 12 | 11 | imbi1i | |
| 13 | 12 | albii | |
| 14 | 13 | exbii | |
| 15 | 7 14 | mpbi | |
| 16 | elequ1 | ||
| 17 | elequ1 | ||
| 18 | 16 17 | imbi12d | |
| 19 | 18 | cbvalvw | |
| 20 | 19 | imbi1i | |
| 21 | 20 | albii | |
| 22 | 21 | exbii | |
| 23 | 15 22 | mpbir |